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Abstract
Background: The interconversion of two important energy metabolites, 3-hydroxybutyrate and
acetoacetate (the major ketone bodies), is catalyzed by D-3-hydroxybutyrate dehydrogenase
(BDH1: EC 1.1.1.30), a NAD+-dependent enzyme. The eukaryotic enzyme is bound to the
mitochondrial inner membrane and harbors a unique lecithin-dependent activity. Here, we report
an advanced purification method of the mammalian BDH applied to the liver enzyme from jerboa
(Jaculus orientalis), a hibernating rodent adapted to extreme diet and environmental conditions.

Results: Purifying BDH from jerboa liver overcomes its low specific activity in mitochondria for
further biochemical characterization of the enzyme. This new procedure is based on the use of
polyclonal antibodies raised against BDH from bacterial Pseudomonas aeruginosa. This study
improves the procedure for purification of both soluble microbial and mammalian membrane-
bound BDH. Even though the Jaculus orientalis genome has not yet been sequenced, for the first
time a D-3-hydroxybutyrate dehydrogenase cDNA from jerboa was cloned and sequenced.

Conclusion: This study applies immunoaffinity chromatography to purify BDH, the membrane-
bound and lipid-dependent enzyme, as a 31 kDa single polypeptide chain. In addition, bacterial BDH
isolation was achieved in a two-step purification procedure, improving the knowledge of an enzyme
involved in the lipid metabolism of a unique hibernating mammal. Sequence alignment revealed
conserved putative amino acids for possible NAD+ interaction.
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Background
The NAD+-dependent D-3-hydroxybutyrate dehydroge-
nase (BDH: EC 1.1.1.30), which has been studied by our
group for several years [1-9], plays a key role in redox bal-
ance and energy metabolism since it reversibly converts 3-
hydroxybutyrate into acetoacetate (the two major ketone
bodies largely produced under high lipolysis, diabetes, or
fasting). In eukaryotic cells, BDH is a mitochondrial inner
membrane-bound enzyme [1,10,11] and its active site is
located on the matrix side [2,12]. BDH is coded by a
nuclear gene and is synthesized in free cytosolic polys-
omes as a precursor that is posttranslationally imported
into mitochondria and then processed at its N-terminus
presequence [4,13]. A very unique property, the catalytic
activity of the enzyme is lecithin-dependent [14,15]. The
purified BDH is nonactive in absence of lipids but can
insert spontaneously and unidirectionally into liposomal-
phospholipid vesicles or into purified membranes and
then become catalytically active [12]. It has previously
been proposed that specific activation of BDH by phos-
phatidylcholine (PC)-containing liposomes involves an
allosteric mechanism [16] in which PC enhances coen-
zyme-binding [17]. As reported by Williamson et al. [18],
according to the equilibrium constant, in the presence of
NADH, the hepatic BDH transforms acetoacetate into D-
3-hydroxybutyrate, which is then transported through the
blood stream to peripheral tissues, i.e., brain, heart, kid-
ney, etc. In extrahepatic tissues, BDH catalyzes the reverse
reaction where acetoacetate is used, after its conversion to
acetyl-CoA, in ATP production. On the other hand, ace-
toacetyl-CoA can be used for fatty acid synthesis. A cata-
lytic mechanism involving cystenyl and histidyl residues
of the BDH active site for the interconversion of D-3-
hydroxybutyrate and acetoacetate in both liver and
peripheral tissues has been previously proposed by our
group [7].

In striking contrast to mammalian BDH, the bacterial
BDH is a cytosolic soluble enzyme and does not require
phospholipids for its activity [19]. Indeed, the role of
BDH in many bacteria is to produce D-3-hydroxybutyrate,
which is a substrate for the synthesis of poly -3-hydroxy-
butyrate (PHB) as intracellular carbon energy storage [20].

Elsewhere, our group has long been interested in the lipid
metabolism of an intriguing mammalian species: the jer-
boa (Jaculus orientalis) [9,21]. The jerboa is a nocturnal
herbivorous rodent living mainly in Morocco's subdesert
highland. It is an appropriate organism to study meta-
bolic regulation because of its remarkable tolerance to
heat, cold, dryness and scarce diet. This animal is a true
hibernator [22], developing a seasonal obesity by accu-
mulating fat during the prehibernation period. This fat is
used during the hibernation period, together with carbo-

hydrates, to produce energy via the formation of D-3-
hydroxybutyrate by BDH [21].

To further characterize BDH from jerboa, it appeared nec-
essary to overcome its low specific activity in mitochon-
dria by purifying the enzyme from liver of the jerboa by
establishing a new and original purification technique.
Indeed, while bacterial BDH can be easily purified with
the classical method for soluble enzymes [23,24], enor-
mous effort has gone into purifying the mitochondrial
membrane-bound BDH from mammals, mostly from
bovine heart [1,6,25-34], rat liver [1,6,31-33], rat brain
[34], recombinant rat liver enzyme expressed in
Escherichia coli [35], and Camelus liver [8]. Typically, after
membrane disruption by detergent (cholate or Triton X-
100) or by phospholipase A2-generated lysophospholip-
ids, the purification procedures were based on combined
chromatographies (adsorption, dihydroxyapatite, ionic
exchange, hydrophobic, NAD+ or NAD+-related affinity,
and often controlled pore glass beads). Unfortunately,
these methods were difficult to adapt to other sources.
Until now, no-one has proposed an immunoaffinity puri-
fication method. Here, we report the development of an
antibody-antigen procedure based on the existence of
conserved epitopes between bacterial and mammalian
BDH. Indeed, BDH from Jaculus orientalis was purified
using polyclonal antibodies raised against a prokaryotic
BDH purified from the bacterium Pseudomonas aeruginosa.
After solubilization of mitochondrial membranes using
Triton X-100, purification of jerboa liver BDH was proc-
essed using ammonium sulfate precipitation and phenyl-
Sepharose and Sepharose-Blue chromatographies. Final
purification was achieved by immunochromatography,
providing a 31 kDa single polypeptide chain. Moreover,
even though the genome of Jaculus orientalis has not been
sequenced, a D-3-hydroxybutyrate dehydrogenase cDNA
from jerboa was cloned and sequenced for the first time.
Sequence alignment revealed conserved putative essential
amino acids for NAD+ interaction. This study applied
immunoaffinity chromatography to purify BDH, a mem-
brane-bound and lipid-dependent enzyme. In addition,
bacterial BDH was isolated in a two-step purification pro-
cedure, providing better knowledge of a lipid metabolism
enzyme in a unique hibernating mammalian species.

Results
- Purification of soluble BDH from Pseudomonas 
aeruginosa
BDH was purified to electrophoretic homogeneity from P.
aeruginosa extract in a two-step ammonium sulfate frac-
tionation (27–42%) procedure, followed by Blue Sepha-
rose CL-6B chromatography.

In a typical experiment, a total amount of 4600 mg of pro-
tein, corresponding to 1012 units of BDH, was obtained
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from crude extract of P. aeruginosa. After ammonium sul-
fate fractionation, the concentrated enzyme solution was
applied to a Blue Sepharose CL-6B column. A specific
activity of 11.2 U/mg of protein was obtained for the puri-
fied enzyme, with a yield of 6.6% and a purification factor
of 50 (not shown).

The SDS-PAGE analysis of the different fractions obtained
during this purification shows only one protein band at
29 kDa in the final enzyme preparation [Additional file
1].

Using purified BDH as the immunogen, we produced rab-
bit polyclonal antibodies, which selectively recognize a
single immunoreactive band (29 kDa) in both crude
extracts and purified preparations (not shown).

The polyclonal antibodies produced were purified and
fixed to CN-Br Sepharose in order to purify the BDH from
jerboa liver.

- Purification of membrane-bound BDH from jerboa liver
In a typical trial, a total of 5100 mg of protein, corre-
sponding to 5.5 units of BDH, was obtained after solubi-
lization of mitoplast proteins using triton X-100 as
nonionic surfactant. After ammonium sulfate fractiona-
tion, the concentrated enzyme solution was applied to
phenyl-Sepharose HP, Blue Sepharose CL-6B, and immu-
noaffinity columns. Table 1 summarizes the results of the
purification process. A specific activity of 0.030 U/mg of
protein was obtained for the purified enzyme, with a yield
of 0.50% and a purification factor of 37.

The SDS-PAGE analysis shows that the immunoaffinity
step is crucial to eliminate the remaining contaminants of
the penultimate fractions. This last purification step
shows a single 31 kDa protein (Figure 1), which has been
described for other eukaryotic BDH subunits (Figure 1A,
lane 5). The 31 kDa jerboa BDH monomer cross-reacts
with the purified antibacterial BDH antibodies (Figure
1B).

- Properties of the purified BDH from jerboa liver
BDH kinetic parameters of purified BDH from jerboa liver
in liposome-reconstituted phospholipid-enzyme complex
were determined. The results obtained show a value of 51
nmol/min/mg for Vmax, 0.45 mM, 2.1 mM, and 1.45 mM
for KMNAD+, KMBOH and KDNAD+, respectively. The
comparison of these values with the parameters of the
native BDH bound to the inner mitochondrial membrane
[9] shows small differences in the KM values. This can be
explained by the fact that the purified BDH released from
its mitochondrial membrane environment was success-
fully reconstituted in an active form following addition of
mitochondrial phospholipids.

The effect of temperature on the BDH activity was fol-
lowed. The results obtained show that the optimal tem-
perature for the BDH activity is 35°C for J. orientalis
[Additional file 2]. This is close to 37°C for BDH from
Camelus dromedaries [8] but very different (55°C) for
microbial BDH from Acidovorax [24].

Interestingly, like membrane-bound enzyme, the Arrhen-
ius plots of the reconstituted active purified BDH show a
break at 17°C [Additional file 3]. BDH activity depend-
ence on temperature discontinuity was previously found
for native BDH in the heavy mitochondria fraction from
Jerboa liver [9]. This property is considered to reflect that
BDH lipids depend on the physical state of the membrane
phospholipid bilayer.

The optimal pH value of BDH activity is 8 [Additional file
4]. Similar results were found for rat [14], Camelus drome-
daries [8], and for the bacteria Acidovorax, Rhodospirillum
rubrum and Rhodopseudomonas spheroides [24].

- Nucleotide sequence and analysis of J. orientalis BDH 
cDNA
In order to clone the cDNA encoding BDH from jerboa
liver, RT-PCR, primers were selected from two highly con-
served BDH regions (LPGKALS and PMDYYWW) from
mammalian species since the jerboa genome has not yet

Table 1: Purification steps of BDH from jerboa liver

Total protein 
(mg)

Specific activity 
(nmol/min/mg of protein)

Total activity 
(μmol/min)

Purification factor 
(fold)

Yield 
(%)

Crude extract 5100 1.1 5.5 1.0 100
Ammonium sulphate (30–50%) 560* 8.2 4.5 7.4 82
Phenyl-Sepharose 350 10.4 3.6 9.4 65
Sepharose-Blue 50 17.6 0.87 16.0 16
Immunoaffinity chromatography 0.75 41.3 0.030 37.5 0.50

Typical experiments were reported from three independent trials.
* The ammonium sulphate precipitation step eliminates 91% of contaminating proteins from Jerboa crude extracts, respectively. These values were 
calculated from the total protein amount deduced from the amount of BDH (estimated from specific activities after the immunoaffinity 
chromatography step).
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been sequenced. For the nucleotide sequence, see the sec-
tion titled "Method" section. The amplification procedure
revealed a single cDNA fragment with the expected size
(936 pb) [Additional file 5]. The sequenced clone (Gen-
Bank accession # bankit 1072824 EU563473) was aligned
and compared with other BDHs, from several species,
including the mammalian vertebrate phyla and bacterial
species, using the BioEdit program [36]. The highest iden-
tity was shown when the sequence was aligned with other
mammalian BDH sequences (human, rat and mouse).
Indeed, the analysis shown in Figure 2 reveals 79% iden-
tity with rat and mouse, 75% with human and only 19%
with P. aeruginosa. Jerboa BDH sequence is 92% complete
since amino acids from the C-terminal side are not yet
available. The differences in sequences obtained between
mammalian and bacterial BDHs can be related to the bio-
chemical properties of both enzymes since mammalian
BDH is membrane-bound and located in mitochondria
and bacterial BDH is soluble and cytosolic. Moreover, the
comparison between the two BDH types in terms of
cDNA-deduced sequences reveals the major difference in
the length of the polypeptide chain: 343 amino acids for
the human BDH vs 256 for Pseudomonas. The longer
sequence of the mammalian enzyme is related to the
mitochondrial targeting presequence at the N-terminus
and to the phospholipid-binding region at the C-terminus
(Figure 2) [3,37]. The sequence alignment shows 48 iden-

tical amino acids and 42 similar amino acids between the
mammalian and the bacterial enzymes.

Discussion and conclusion
Purifying BDH from Jerboa liver made it possible to over-
come its low specific activity in mitochondria for further
biochemical characterization of the enzyme.

Previous BDH purification procedures, partial or com-
plete, were successively proposed by different groups in
order to improve the purity, the stability, the yield, the
time required or simplicity, and to adapt the technique to
BDH from various mammalian sources. The purification
procedures were often based on several chromatography
steps by combining adsorption, hydrophobic, ionic
exchange, or NAD+ (or NAD+-related affinity such as the
dye affinity matrix or controlled pore glass beads). The
published procedures were not convenient to Jerboa liver
BDH purification. For instance, rat liver [31] and bovine
heart [27] BDH was not pure and/or contained significant
amounts of residual phospholipids. The technique devel-
oped in Fleischer's lab [28,29], using controlled pore glass
beads (CPG), was adapted for large-scale use and required
a huge amount of starting biological material but pro-
vided a low yield (0.02%).

BDH purification steps from jerboa liverFigure 1
BDH purification steps from jerboa liver. Proteins (40 μg) were resolved by SDS-PAGE and stained with Coomassie Bril-
liant Blue (a) or subjected to Western blot (b) using the purified polyclonal anti-BDH antibodies. Lanes M, 1, 2, 3, 4, and 5 rep-
resent standard proteins, crude extract, 30–50% ammonium sulphate fraction, phenyl-Sepharose fraction, affinity 
chromatography fraction, and immunoaffinity chromatography eluate pool (pure protein preparation). Bound antibody was 
located by immunoreaction combined with peroxidase conjugated goat anti-rabbit IgG. The arrow (b) indicates the band cor-
responding to the BDH subunit.
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Our new procedure was based on the use of polyclonal
antibodies raised against BDH from bacterial Pseudomonas
aeruginosa. After purification steps using phenyl Sepharose
and Blue-Sepharose, Jerboa liver BDH fractions were not
pure to homogeneity and required an immunoaffinity
column to achieve purification, yielding 0.5%.

The molecular weight of the purified jerboa BDH subunit
(31 kDa) shows a similar value to the values given for
most of the eukaryotic BDH, e.g., for bovine heart [30], rat
liver [33] and human heart [38]. In contrast, BDH from
Camelus dromedaries shows a molecular weight of 67 kDa
[8], possibly corresponding to an evolutionary duplicated
form. The primary sequence of BDH was previously deter-
mined for rat liver [39] and human heart enzyme [38].

The purified jerboa liver BDH from the BDH-antibody
complex is in a readily reactivating form, since the active
BDH-mitochondrial phospholipid complex shows simi-
lar enzymatic parameters as the native mitochondrially
bound BDH, i.e., similar kinetic parameters, a break in the
Arrhenius plot, optimum pH, and optimum temperature.

While the sequenced genome of Jaculus orientalis is not
available, for the first time a BDH cDNA from jerboa has
been cloned and sequenced. From: this and from the puri-
fied protein we assume that both correspond to the same
molecular entity despite the fact that two kinetically dif-
ferent BDH enzymes were revealed in heavy and light
mitochondria fromm jerboa liver [42]. Sequence align-
ment revealed putative essential amino acids for the

Alignment of BDH sequencesFigure 2
Alignment of BDH sequences. Alignment of BDH sequences from mammalian species (rat, mouse, human and jerboa) with 
Pseudomonas aeruginosa (P. a.) was realized using ClustalW (Thompson et al., 1994). Identical and similar residues were shown 
in black and yellow background respectively. The presumed amino acids sequences corresponding to oligonucleotides used for 
the PCR amplification of Jerboa BDH cDNA are underlined. According to the identity between Rat, Mouse and Human, they 
are considered as putative sequences in Jerboa. Amino acids of the catalytic tetrad Asn111, Ser139, Tyr152 and Lys156 (P. a. 
numbering) are marked by a star (*). These amino acids correspond to Asn114, Ser142, Tyr155 and Lys159 of the Pseudomonas 
fragi BDH (Ito et al., 2006). Amino acids participating to the NAD+ binding pocket Gly12, Leu61, Ala88, Ile90 and Ile108 (P. a. 
numbering) are marked by a hash sign (#). These amino acids correspond to Gly11, Leu64, Ala91, Ile93 and Leu113 of the Pseu-
domonas fragi BDH (Ito et al., 2006).
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NAD+ interaction. The full identification and the spatial
position of BDH strategic amino acids could not be
achieved with a mammalian BDH since no 3D-structure is
thus far available despite a number of attempts to obtain
crystals (most particularly in studies on the bovine mito-
chondrial membrane-bound enzyme from S. Fleischer's
group, Vanderbilt University, Nashville TN, personal
communication). The available structural data are related
to the structure of the bacterial BDH of Pseudomonas fragi
(the only crystallized and modeled BDH [40]). Based on
the Pseudomonas fragi BDH structure, modeling has
revealed that conserved amino acids are closely localized
to the BDH active site[40]. This analysis highlights the
importance of these amino acids in the enzyme reaction,
especially the strictly conserved tetrad: Asn114, Ser142,
Tyr155 and Lys159 (amino acid numbers corresponding
to Pseudomonas fragi BDH). In addition, Ito et al. [40]
reported that the adenine of NAD+ is accommodated in
the hydrophobic pocket including Gly11, Leu64, Ala90,
Ile93 and Leu113 (Pseudomonas fragi BDH). All these resi-
dues were also found in the BDH sequences studied (Fig-
ure 2).

This study applied immunoaffinity chromatography to
purifying BDH, a membrane-bound and lipid-dependent
enzyme. In addition, bacterial BDH isolation was
achieved in a two-step purification procedure. This
method also improved the knowledge of a lipid metabo-
lism enzyme in a unique hibernating mammal.

Methods
- Microorganisms and growth conditions
Bacteria Pseudomonas aeruginosa (Pasteur Institute, Casa-
blanca, Morocco) were grown aerobically at 37°C without
exceeding the exponential phase in nutrient broth (Topley
House, Bury, UK). The exponential phase was determined
spectrophotometrically at 600 nm. The culture was inocu-
lated with 1% (v/v) overnight preculture in the same
medium.

- Buffers
Buffer A: 50 mM potassium phosphate buffer (pH 7.5)
containing 2 mM EDTA and 1 mM DTT.

Buffer B: buffer A containing ammonium sulfate at 50%
saturation.

- Crude extract preparation
Bacterial culture (5 l) was harvested by centrifugation at
2500 g for 10 min, washed three times with 50 mM potas-
sium phosphate buffer (pH 7.5), and suspended in the
same buffer containing 2 mM EDTA and 1 mM DTT
(buffer A). Cells were disrupted at 4°C by sonication (30
s, 90% output, 12×) using a Bandelin Sonopuls sonifier.
Cellular debris and unbroken cells were removed by cen-

trifugation at 2500 g for 45 min at 4°C. The supernatant
obtained constituted the crude bacterial extract (soluble
protein fraction).

- BDH purification from the bacterium Pseudomonas 
aeruginosa
The enzyme was purified from the crude bacterial extract
in two steps: ammonium sulfate fractionation and Blue
Sepharose CL-6B chromatography. All steps were per-
formed at 4°C.

Ammonium sulfate fractionation
The crude extract of P. aeruginosa was subjected to protein
precipitation in the 27–42% saturation range of ammo-
nium sulfate at 4°C. The final pellet was dissolved in a
minimal volume of buffer A. The protein solution was
dialyzed overnight against 5 l of the same buffer.

Blue Sepharose CL-6B chromatography
The dialyzed enzyme preparation was applied to a Blue
Sepharose CL-6B column equilibrated with two bed vol-
umes of buffer A at 4°C. The column was washed with
three bed volumes of buffer A. Finally, the enzyme was
eluted with buffer A containing 0.1 mM NAD+ at a flow
rate of 6 ml/h. Active fractions were collected and con-
served in 50% (v/v) glycerol at -20°C until use.

- Production and purification of the anti-BDH antibodies 
against soluble BDH from Pseudomonas aeruginosa
A 1.5-kg New Zealand white rabbit, grown in the univer-
sity's animal care facilities, was injected with 1 mg of the
BDH purified from P. aeruginosa in aqueous solution (v/
v) with incomplete Freund's adjuvant. After 21 days, a sec-
ond dose of 800 μg of BDH was injected. After the 4th
week, a third dose of 500 μg was again injected. One week
later, the rabbit was anesthetized and 50 ml of blood were
collected. The serum was separated after an overnight
coagulation at 4°C and subsequent centrifugation.

Ammonium sulfate precipitation
The resulting serum, containing monospecific anti-BDH
polyclonal antibodies, was brought to 40% saturation
with solid ammonium sulfate ((NH4)2SO4), stirred for 1
h, and then centrifuged at 2500 g for 45 min. Afterwards,
the pellet was dissolved in a minimal volume of phos-
phate buffer saline (PBS), pH 7.4, containing 137 mM
NaCl, 2.7 mM KCl, 1.5 mM KH2PO4, and 4.3 mM
K2HPO4. The antibody solution was dialyzed overnight
against 5 l of the same buffer.

Ion-exchange chromatography
The dialyzed antibody preparation was applied at a flow
rate of 6 ml/h to a DEAE-cellulose (Serva, Heidelberg,
Germany) column (3 × 12 cm) that had been equilibrated
with PBS. The column was extensively washed at the same
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flow rate with equilibrating buffer solution. Two-milliliter
fractions were collected and those containing the anti-
BDH antibodies were pooled. Since anti-BDH antibodies
are iso-ionic at pH 7.4, they were not retained by the
DEAE-cellulose and were generally left with the column's
dead volume.

Immunoaffinity chromatography preparation
Sequence alignments from different species, including P.
aeruginosa, human, rat, and mouse, revealed that BDHs
share an amino acid identity between regions (LVNNAGI,
VNI, PG). This property had prompted us to use the anti-
bodies against bacterial BDH to purify the eukaryotic anti-
body.

We verified the specificity of anti-BDH antibodies by
showing that BDH activities were completely inhibited in
both P. aeruginosa and jerboa liver using immune serum,
which did not inhibit BDH activity in jerboa GAPDH
(glyceraldehyde-3-phosphate dehydrogenase) (data not
shown). Moreover, preimmune serum had no effect. On
the other hand, anti-BDH antibodies reacted with BDHs
in western blotting (data not shown).

Immunoaffinity chromatography column (1 × 10 cm)
was prepared with CN-Br Sepharose (Pharmacia) coupled
with purified BDH from P. aeruginosa according the sup-
plier procedure. After loading total polyclonal antibodies,
the specific anti-BDH antibodies were eluted. and subse-
quently bound to CN-Br Sepharose in order to purify the
BDH from jerboa liver with the same procedure as
described above.

Purification of mitochondrial membrane-bound BDH from 
jerboa liver
Jerboa housing: adult greater Egyptian jerboas (Jaculus ori-
entalis, Rodentia, Dipodidae) (120–150 g, 4–6 months
old) were captured in the area of Engil Aït Lahcen (in the
subdesert eastern Morocco highland). They were adapted
to laboratory conditions for 3 weeks at a temperature of
22°C with a diet of lettuce and rat chow and water ad libi-
tum before killing. The light cycle during the experiment
was set to 14 h of light and 10 h of darkness. Animal stud-
ies were conducted in accordance with the ethical recom-
mendations on Animal Use and Care of the University
Hassan II Casablanca.

Remark. We abandoned to purify liver BDH from hiber-
nation Jerboa since hibernation is a complex and very dif-
ficult phenomenon to experimentally control and
reproduce in a laboratory [9,21]. The rate of success is
only 20% survival in contrast with active Jerboa housing.

Liver mitochondria and mitoplast isolation
The jerboas were decapitated and the livers (75 g total)
were rapidly removed for mitochondria purification
according to the technique described by Fleischer et al.
[41] and as previously used by Mountassif et al. [42]. This
method can be used to prepare high-yield mitochondria.
The mitoplasts (outer membrane-free mitochondria)
were prepared according to Kielley et al. [43]. Briefly, liver
mitochondria were swelled in a 20-mM phosphate buffer
at 0.5 ml/mg of protein for 30 min at 0°C. The mitoplasts
were pelleted by centrifugation at 2500 g for 30 min.

Membrane solubilization and BDH release
The mitoplast fraction was dissolved in an equivalent vol-
ume of buffer A containing 0.2% Triton X-100 and then
sonicated. The solubilization was complete after 1 h incu-
bation on ice. The mixture was then centrifuged at 2500 g
for 1 h and the supernatant containing the solubilized
enzyme was collected.

Ammonium sulfate fractionation
The supernatant was subjected to protein precipitation in
the 30–50% saturation range of ammonium sulfate. The
final pellet was dissolved in a minimal volume of the
buffer A containing ammonium sulfate at 50% saturation.

Phenyl Sepharose chromatography
The ammonium sulfate fraction was applied at the low
flow rate (12 ml/h) to a phenyl Sepharose HP (Pharmacia
Biotech) column (1.6 × 18 cm) pre-equilibrated with
buffer B (buffer A containing ammonium sulfate at 50%
saturation). After flow-thorough washing, the column was
subjected to a decreasing linear gradient of ammonium
sulfate (from 50% to 0%) in buffer A. The 5-ml fractions
of the activity peak were pooled and dialyzed for 2 h
against buffer A after addition of Triton X-100 to the
0.02% final concentration.

Blue Sepharose CL-6B chromatography
The dialyzed enzyme preparation was applied to a Blue
Sepharose CL-6B column equilibrated with two bed vol-
umes of buffer A. The column was washed with three bed
volumes of buffer A. Finally, the enzyme was eluted with
buffer A containing 10 mM NAD+ at a flow rate of 6 ml/h.
Active fractions were collected and pooled.

Immunoaffinity chromatography
For preparation (see the section titled "Production and
purification of the anti-BDH antibodies against soluble
BDH from Pseudomonas aeruginosa" above), BDH from jer-
boa liver was eluted by 5 M MgCl2, pH 7. Active fractions
were selected by measuring the BDH activity level, col-
lected and dialyzed at 4°C for 2 h against 5 l of buffer A
containing 5 mM MgCl2 and 50% glycerol.
Page 7 of 10
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Phospholipid extraction and preparation of liposomes
Phospholipids were extracted from mitoplasts of jerboa
liver according to Rouser and Fleischer [44]. One volume
of mitoplast preparation was added to chloroform/meth-
anol/0.8% KCl (13.3/6.7/4.2; v/v/v). The mixture was
homogenized with an Ultraturrax at 7500 rpm for 3 min.
After sedimentation, the organic phase was recovered and
methanol/0.8% KCL/chloroform (48/47/3; v/v/v) was
added. The chloroform phase was then concentrated in a
rotary evaporator. The phospholipids were dissolved and
sonicated in buffer A. The solution obtained was left to
decant and the supernatant, which contains small lipo-
somes, was stored at -20°C until use [45]. The amount of
phospholipids was determined by measuring the phos-
phorus concentration according to Chen et al. [46]. Before
use, the liposome preparation was quickly sonified.

Protein assay
The protein content was measured according to the Brad-
ford procedure, using bovine serum albumin (BSA) as
standard [47].

BDH reactivation
Purified BDH (10 μg) was incubated in the buffer contain-
ing 6 mM potassium phosphate, pH 8, 0.5 mM EDTA, 0.3
mM dithiothreitol in the presence of 0.2 μg mitochondrial
phospholipid (estimated by lipid phosphorus determina-
tion). The mixture was incubated for 10 min at room tem-
perature and enzymatic activity was then measured.

BDH activity determination
As described by El Kebbaj and Latruffe [7], BDH activity
was measured at 37°C by monitoring NADH production
at 340 nm (ε = 6.22 × 103 M-1cm-1) using 100 μg of protein
homogenate (or 10 μg of purified enzyme) in a medium
containing 6 mM potassium phosphate, pH 8, 0.5 mM
EDTA, 0.3 mM dithiothreitol, in the presence of 2 mM
NAD+ (Sigma-Aldrich). The reaction was started by adding
DL-3-hydroxybutyrate (Sigma-Aldrich) to the 10-mM
final concentration.

- Characterization of jerboa membrane-bound BDH
- Denaturing polyacrylamide gel electrophoresis
Sodium dodecyl sulfate polyacrylamide gel electrophore-
sis (SDS-PAGE) was performed as described by Laemmli
[48] on one-dimensional 12% polyacrylamide slab gels
containing 0.1% SDS.

- Western blotting
After SDS-PAGE (12%) and subsequent transfer in nitro-
cellulose [49], the proteins (30 μg) were exposed to 1/100
dilution of monospecific polyclonal anti-BDH antibody
and detected with the secondary antibody (anti-rabbit,
IgG peroxidase conjugate) (Promega) diluted to 1/2500.

- BDH enzymatic properties
Initial velocities were measured at varying BOH concen-
trations of (2.5–10 mM) or NAD+ (0.5–2 mM). Michaelis
constants (KM), dissociation constants (KD), and maximal
velocity of the forward reaction were obtained by mathe-
matical analysis following Cleland [50].

- Determination of optimal pH and temperature-
dependent BDH activity
The effect of pH on BDH activity was studied in a range
from pH 4 to 10 using a mixture of different buffers (Tris,
Mes, Hepes, potassium phosphate, and sodium acetate).

The temperature effects were characterized by activation
and denaturation processes. For activation, the buffered
medium containing 6 mM potassium phosphate, pH 8,
and 0.5 mM EDTA was incubated for 2 min at tempera-
tures from 5 to 80°C. Then, 2 mM of NAD+ and 10 μg of
purified BDH were added. The reaction was started imme-
diately by the addition of 10 mM of BOH. For denatura-
tion, 10 μg of purified BDH were incubated at
temperatures from 5 to 80°C for 2 min in medium con-
taining 6 mM potassium phosphate, pH 8, and 0.5 mM
EDTA. Then 2 mM of NAD+ were added and the enzymatic
activity was measured by the later addition of 10 mM of
BOH after 2 min of incubation at 37°C.

A BDH Arrhenius plot was obtained by measuring the
enzymatic activity at temperatures from 5 to 40°C and
interpreted as described by Raison [51].

- RNA isolation and RT-PCR
Total RNAs were obtained from jerboa liver previously
frozen in liquid nitrogen and stored at -80°C using Trizol
reagent according to the supplier's protocol (Invitrogen).

The primers used were obtained from the alignment
between consensus sequences of BDH from human, rat,
and mouse.

First-strand cDNA was produced by reverse transcription
(RT) using 200 units of Moloney Murine Leukemia Virus
Transcriptase (Promega) in conjunction with 2 μg total
RNA and the reverse primer; 5'-CCACCAGTAGTAGTC-
CATG-3' (corresponding to the LPGKALS amino acid
sequence starting at amino-acid no. 13 in mouse and
human BDH and at no. 14 in rat BDH) in a reaction mix-
ture containing 50 mM Tris-HCl buffer, pH 8.3, 75 mM
KCl, 3 mM MgCl2, 10 mM dithiothreitol, and 0.2 mM of
each deoxynucleoside triphosphate for 1 h at 42°C. An
aliquot from this template (1/10 of the reaction) was used
in a subsequent polymerase chain reaction (PCR) using
1.25 U of GoTaq DNA polymerase (Promega), 0.04 μM of
reverse and forward primer (5'-CTCCCAGGAAAA(A/
G)C(C/T)CTAAGTG-3') (corresponding to the
Page 8 of 10
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PMDYYWW amino acid sequence starting at amino acid
no. 223 in mouse and human BDH and at no. 224 in rat
BDH). PCR was performed for 35 cycles in the following
conditions; 92°C for 30 s, 55°C for 30 s, and 72°C for 1
min 30 s.

- Cloning and sequencing of the BDH clone from J. 
orientalis
The PCR product was purified using QIAEX II Kit (Qia-
gen) and subcloned into the pGEM-T vector system
(Promega), and the nucleotide sequence was determined
on both strands using universal primers T7 and SP6
(MWG Biotech, Germany).

The sequence obtained and other sequences were com-
pared using the BioEdit program [36] and ClustalW [52].
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